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Despite recent advances in cancer treatment over the past 30 years, therapeutic options
remain limited and do not always offer a cure for malignancy. Given that tumor-
associated antigens (TAA) are, by definition, self-proteins, the need to productively engage
autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These
have traditionally focused on the administration of autologous monocyte-derived dendritic
cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-
infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although
such approaches have shown some efficacy, success has been limited by the poor capacity
of moDC to cross present exogenous TAA to the CD8+ T-cell repertoire and the potential
for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer
opportunities to generate patient-specific stem cell lines with the potential to differentiate
in vitro into cell types whose properties may help address these issues. Here, we review
recent success in the differentiation of NK cells from human induced pluripotent stem (iPS)
cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including
CD141+XCR1+ DC, capable of cross presenting TAA to naïve CD8+ T cells. Furthermore,
we review recent progress in the use of TIL as the starting material for the derivation of
iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from
which potentially unlimited numbers of naïveTAA-specificT cells may be differentiated, free
of the risks of exhaustion.
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CANCER AND THE IMMUNE SYSTEM: A HISTORICAL
PERSPECTIVE
Although it was Paul Ehrlich who, in 1909, first introduced the con-
cept of the immune system as a means of controlling the incidence
of cancer, it was 50 years later, with development of the field of cel-
lular immunology and discovery of the role of the immune system
in allograft rejection (1), that this notion first gained traction. In
1970, Burnet and Thomas introduced the concept of immuno-
logical surveillance and postulated that the immune system had a
mechanism for eliminating potentially dangerous mutated cells
and speculated that lymphocytes were actively involved in the
process by the recognition of neo-antigens, either unique to the
tumor (tumor-specific antigens; TSAs) or shared by other somatic
cells (tumor-associated antigens; TAAs) (2, 3). This theory was
met with skepticism, due in part, to the observation that the inci-
dence of tumors in immune compromised nude mice did not
differ substantially from their wild type counterparts (4, 5). These
observations were, however, counter-balanced by the discovery
that tumors may lack immunogenicity, not due to the absence of
TAAs per se but rather their inability to activate the immune system
(6). This subsequently gave rise to the modified concept of cancer
immunoediting (7), which postulates that a developing tumor is
under a constant immunological selection pressure, leading either
to its elimination, the establishment of a dynamic equilibrium
between the tumor and the immune system, or its escape from

immune surveillance, resulting in unopposed growth. It is now
accepted that one of the hallmarks of cancer is the lack of immune
regulation (8) and that certain cancers therefore have the propen-
sity to induce a state of autoimmunity in some individuals. While
the underlying mechanisms remain to be clarified, mutations in
specific TAAs may increase their immunogenicity, eliciting T and
B cell responses that readily cross-react with the wild type pro-
tein, expressed in other cell types or anatomical locations. Indeed,
a recent study has shown that certain cancer patients develop
the chronic autoimmune rheumatic disease, systemic sclerosis
(9), illustrating the important concept that immune surveillance
harnesses elements of the autoreactive T-cell repertoire to elicit
anti-tumor responses, sometimes at the cost of collateral damage
to self-tissues: it is the same autoreactive repertoire that cancer
immunotherapy seeks to recruit.

APPROACHES TO CANCER IMMUNOTHERAPY
Radiation, chemotherapy, and surgery are the three traditional
methods for controlling the spread of cancer, which, although
effective, may fail to completely eliminate neoplastic cells or the
cancer stem cells that sustain a developing tumor. Additionally, the
lack of specificity of these approaches and the damage to other-
wise healthy tissues may lead to severe morbidity and, in extreme
cases, mortality. Given its inherent specificity, adaptability, and
capacity to generate a memory response, cancer immunotherapy
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promises to be more effective and durable than classical treatment
modalities (10).

Cytokines, such as interleukin-2 (IL-2), interferon-α (IFN-
α), and tumor necrosis factor-α (TNF-α) have been used non-
specifically to stimulate an anti-tumor response. These cytokines
act either by directly inhibiting growth of the tumor cells or
by promoting proliferation and sustained cytokine production
by T cells and NK cells, thereby increasing their ability to tar-
get tumor cells. Some cytokines, such as granulocyte-macrophage
colony-stimulating factor (GM-CSF), act on antigen-presenting
cells (APCs), inducing upregulation of MHC and co-stimulatory
molecules, which promote their capacity to activate lymphocytes.
A number of cytokines, used singly or in combination, have proven
effective in increasing the anti-tumor immune response and have,
in recent years, entered clinical trials for the treatment of advanced
cancer (11). IL-2 has, for instance, been approved by the US Food
and Drug Administration (FDA) for the treatment of metastatic
melanoma and renal-cell carcinoma (12). However, given the non-
specificity of the approach, low response rates, and toxic side
effects, additional understanding of cytokine signaling pathways
and their function in vivo are still required (11).

The identification of a number of well-defined TAAs and Tis-
sue Specific Antigens (TSAs), along with the development of
hybridoma technology (13), has facilitated the production of
monoclonal antibodies (mAbs) that either directly target these
antigens or block central pathways involved in tumor function.
mAbs have, for instance, been used to inhibit molecules such as
CTLA-4 and PD-1, since upregulation of their ligands by tumor
cells may inhibit T-cell function, enhancing their ability to evade
immune surveillance (14, 15). In recent clinical trials of the PD-1-
specific mAb, BMS-936558, objective and durable responses were
observed in approximately one in four to one in five patients
with non-small cell lung cancer, melanoma, or renal-cell can-
cer. Immunohistochemical staining of tumor specimens prior to
the onset of treatment, revealed that intra-tumoral expression of
PD-1 ligand (PD-L1) correlated with the induction of anti-tumor
responses, providing a means of stratifying patients in order to
identify those most likely to respond to treatment and greatly
increasing the likely future clinical impact of mAb therapy (16).
Although it was the exquisite specificity of mAbs that first earned
them the name “magic bullets,” response rates remain disappoint-
ingly low when used as a single therapy (17–19). One reason for
this poor performance may lie in the fact that administration of
therapeutic mAbs is inherently passive, failing to generate a mem-
ory response. Furthermore, the repeated administration required
as a result, may elicit neutralizing anti-idiotypic responses, which
greatly limit efficacy.

In contrast, the ultimate aim of cancer immunotherapy is to
activate the immune system to recognize the tumor, thereby gen-
erating a specific and durable effector T-cell response. In order to
achieve this goal, adoptive transfer of TAA-specific T cells has been
explored, involving their expansion ex vivo and re-administration
to the same patients from whom they were originally derived (20).
Alternatively, the ability of DCs to present TAAs to T cells has
been harnessed to generate an immune response against tumor
cells. Whereas adoptive T-cell transfer may generate a burst of
T-cell immunity that is short-lived, DC-based vaccines have the

potential to induce a sustained immune response with the capacity
for subsequent recall (21). It has been shown that DC vaccination,
following adoptive T-cell transfer, may further boost anti-tumor
responses, suggesting a rationale for combining the two therapeu-
tic strategies (21). In this review, we shall discuss recent experience
of harnessing DCs and T cells for cancer immunotherapy and
obstacles hindering their success. We shall also focus on the emerg-
ing use of patient-specific induced pluripotent stem cells (iPSCs)
for the differentiation of DCs, T cells, and NK cells and discuss
how this novel source holds promise for overcoming some of the
shortfalls of conventional cancer immunotherapy.

CELL-BASED IMMUNOTHERAPIES AND THEIR OBSTACLES
As sentinels of the immune system, DCs play a pivotal role in elic-
iting the primary immune response to antigen. The ability of DCs
to process and present protein antigens via the canonical endocytic
pathway is crucial to this process (22). However, some subsets of
DCs also possess the ability to capture exogenous antigens and
cross present them via MHC class I direct to CD8+ T cells, thereby
eliciting a cytotoxic T-cell response (23–25). Since cancer cells are
poor APCs due to constitutively low expression of MHC class I and
II determinants, the generation of protective anti-tumor immu-
nity depends upon the cross presentation of tumor antigens by
DCs (22–24). Although various DC-based cancer vaccines have
been exploited in the past and the properties, advantages, and
disadvantages of each extensively reviewed (20, 26, 27), it is most
commonly DCs cultured ex vivo from peripheral blood monocytes
(monocyte-derived dendritic cells, moDCs) that have shown the
greatest clinical benefit. Indeed, one such vaccine, Provenge, has
entered the market for the routine treatment of prostate cancer
and involves the co-culture of moDCs obtained by leukaphere-
sis, with the TSA, prostatic acid phosphatase (PAP), to which
T-cell responses have been detected following their reinfusion into
patients (28).

The majority of the clinical trials involving cancer vaccination
have used autologous moDCs cultured ex vivo and pulsed with
soluble TAA before re-administration to patients with the hope of
inducing a tumor-specific immune response (29). Although many
of these trials have shown that immunotherapy based on the use of
mature moDC is safe, well-tolerated, and able to elicit an immune
response against the tumor (27), the overall results have been
disappointing, showing significant inter-trial variability between
outcomes (30–32). This may be due, in no small part, to the
donor-to-donor variability in yield and quality of moDCs, which
is further compounded by long-term exposure to chemothera-
peutic agents. Furthermore, the poor capacity of moDCs to cross
present exogenous TAAs to CTLs, limits the magnitude of the
cell-mediated immunity required to clear established tumors.

The recent identification of cross presenting DCs in man,equiv-
alent to the CD8α+ subset that has long been recognized in
the mouse, has rejuvenated interest in the use of DCs in cancer
immunotherapy (33, 34). These cells are defined by their expres-
sion of the surface marker CD141 and the chemokine receptor
XCR1 and are found in the peripheral blood, tonsils, and bone
marrow (35). They display an unrivaled capacity to cross present
exogenous antigen to CD8+ T cells, and hence to elicit effective
cell-mediated immunity. While the properties of CD141+ XCR1+
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DCs make them ideal candidates for immunotherapy against can-
cer, their trace numbers in peripheral blood (<0.1%) limit their
therapeutic exploitation (25). Alternative sources of cross pre-
senting DCs, including their isolation from the spleen or in vitro
differentiation from hematopoietic progenitor cells, have so far
failed to overcome these obstacles (36).

Since the holy grail of cancer immunotherapy is to stimulate
tumor-specific T cells that will elicit a cytotoxic response with
high specificity and minimal toxicity, adoptive transfer of TAA-
specific T cells has gained popularity over the past few years (37,
38). Adoptive T-cell transfer involves the isolation of T lympho-
cytes from the patients and their reinfusion to treat disease. The
adoptive transfer of T cells was first documented in rodents in
1955, where it was noted that T cells obtained from lymph nodes
draining a tumor were able to confer immunity when transferred
into the peritoneum of a secondary host, bearing a similar tumor
(39). Almost three decades later, it was observed that the incuba-
tion of murine splenocytes with IL-2 generated large numbers of
cells, called lymphokine-activated killer (LAK) cells, which were
capable of lysing tumor cells with little effect on other somatic
cells (40). These LAK cells were later shown to decrease tumor
number and size in humans in a wide variety of tumors including
pulmonary and hepatic metastases (41, 42). This work served as
the basis for the use of tumor-infiltrating lymphocytes (TILs) in
immunotherapy (43, 44). The combination of a lymphodepleting
preparative regimen with adoptive transfer of TILs and adminis-
tration of IL-2 has been shown to promote cancer regression in
patients with metastatic melanoma, leukemias, and other types of
tumor (44, 45).

The possibility of genetic modification of the T cells to over-
come the immunosuppressive environment created by the tumor
may lead to more effective therapies in the future, although current
strategies for genetic modification are limited (46) and T cells are
known to constitute particularly intractable targets. Nevertheless,
the possibility of genetically engineering T cells to recognize spe-
cific TAAs makes it possible to target potentially any tumor using
adoptive T-cell transfer (47), while leaving other tissues intact.
The majority of clinical approaches use virus-based transduc-
tion of tumor antigen-specific T-cell receptor (TCRs) or chimeric
antigen receptors (CARs) to generate T cells stably expressing
tumor-specific transgenes which, although efficient, is expensive
and risks insertional mutagenesis. Non-viral approaches to genet-
ically engineer T cells have so far utilized transposon elements
such as piggyback or zinc finger nucleases (46). TALEN and
CRISPR/Cas-9-based-approaches, which allow for the insertion
of transgenes into defined chromosomal loci, are, however, cur-
rently being actively explored (48, 49). Despite the attractiveness of
using CAR technology to target cancer, only the treatment of B cell
leukemia has so far proven successful using this approach. Further-
more, recent work has shown that the treatment of patients with
myeloma or melanoma using T cells engineered to express affinity-
enhanced TCRs for an HLA-A*01-restricted epitope of MAGE-A3
resulted in severe myocardial damage secondary to widespread T-
cell infiltration leading ultimately to fatal cardiogenic shock. These
findings have clearly shown how even altering the affinity of the
TCR for its ligand may introduce unanticipated cross-reactivity
with potentially fatal off-target toxicity (50).

Although much effort has been invested into the adoptive trans-
fer of unmodified T cells in the treatment of cancer, outcomes
have been disappointing. It is, for instance, sometimes challeng-
ing to identify tumor-specific T cells in patients with non-solid
tumors. TILs can also be difficult to isolate from biopsies of most
melanomas. Ex vivo expansion of tumor-specific CTLs can also
prove difficult: in the case of EBV-specific CTLs, for instance,
3 months is required for the production of sufficient CTLs for
re-administration to the patient, with obvious implications for
disease progression. Often, reinfusion of T cells is required follow-
ing adoptive transfer for the induction of a durable response due
to the exhaustion of the expanded CTLs.

NK cells have likewise been used for adoptive transfer, due to
their innate ability to recognize tumor cells deficient in MHC class
I. NK cells have been isolated form peripheral blood, expanded
ex vivo, activated using IL-2 or, more recently, the combination
of IL-12, IL-15, and IL-18 (51), and re-administered to patients
(52). Interestingly, although the use of autologous cells is nor-
mally preferred, several studies have demonstrated that the use of
allogeneic NK cells is significantly more effective (53, 54). Accord-
ingly, the results of several studies have shown NK cells to be
well-tolerated following adoptive transfer with encouraging results
of up to 20 months’ survival following their administration (55).
Nevertheless, low circulating numbers of NK cells in peripheral
blood, coupled with the difficulty in their expansion and their
inability to stimulate a robust response in vivo, limits their use in
immunotherapy.

Given the difficulty of obtaining sufficient numbers of cells to
target tumors in vivo, the advent of induced pluripotency offers
unrivaled opportunities. The proven ability to produce iPS cells
from individuals in a patient-specific manner with the capacity for
indefinite self-renewal and unrestricted differentiation potential,
may facilitate the scale-up in production of critical hematopoietic
cell types, for many of which, protocols have already been opti-
mized. Below, we outline the history of induced pluripotency and
discuss the properties that make them attractive candidates for use
in immunotherapy.

BRIEF HISTORY OF PLURIPOTENCY
Since their first description, embryonic stem (ES) cells have been
regarded as the “gold standard” for pluripotency, displaying the
capacity for indefinite self-renewal and differentiation into any
somatic cell type, irrespective of its embryonic germ-layer of ori-
gin. Mouse ES cells were first isolated in 1981 by Martin Evans (56),
work which later earned him the 2007 Nobel Prize for Physiology
or Medicine. Nevertheless, it was not until 1998 that Thomson and
colleagues succeeded in deriving ES cells from the inner cell mass
of human blastocysts that were surplus to requirements following
in vitro fertilization (57). Human ES cell lines, like their mouse
counterparts, were found to be pluripotent, expressing embryonic
markers such as SSEA-3, SSEA-4, TRA-1–60, and alkaline phos-
phatase and, following injection into immune compromised mice,
forming teratomas containing cell types and tissues from all three
embryonic germ layers.

Since their first derivation, there has been much interest in the
use of human ES cells as a source of diverse cell types for drug
discovery, regenerative medicine, and immunotherapy. However,
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their use has been highly controversial due to the ethical sensi-
tivities surrounding their derivation from human blastocysts, as
well as the inevitable scientific constraints of using an allogeneic
source of cells. In 2006, Yamanaka and colleagues demonstrated
the feasibility of deriving pluripotent stem cells from adult mouse
fibroblasts by retroviral transduction with genes encoding Oct3/4,
Sox2, c-Myc, and Klf4 (58). These so-called iPS cells are indistin-
guishable at the cellular level from conventional ES cells, acquiring
the capacity for indefinite self-renewal, unrestricted differentiation
potential and, following injection into mouse blastocysts, the abil-
ity to generate germline-competent chimeras. These findings were
subsequently translated to human dermal fibroblasts in 2007 by
two independent groups (59, 60), showing, in principle, the feasi-
bility of generating iPS cells on an individual basis. This seminal
work offered a means of “personalizing” pluripotency in a manner
free of the ethical concerns, while simultaneously addressing the
immunological issues that limit the effectiveness of allogeneic ther-
apies. Indeed, the production of iPS cells in an autologous fashion
has paved the way for harnessing the potential of pluripotency for
immunotherapeutic intervention in the pursuit of treatments for
numerous indications.

Given the broad clinical applicability that iPS cells may enjoy
in the future, there have been many efforts to develop and opti-
mize the re-programming process to increase the safety profile
of the resulting cell lines (Table 1). Protocols based on retroviral
transduction may result in insertional mutagenesis while induc-
ing the ectopic upregulation of developmental genes, which may
subsequently render cells immunogenic (61). The direct delivery
of re-programming proteins into somatic cells (62) and trans-
fection with synthetic mRNA (63) have both proven success-
ful, albeit yielding iPS cells at very low efficiency. Interestingly,
small molecules, such as the histone deacetylase inhibitor, valproic

acid, have been demonstrated to increase this efficiency by up to
100-fold (64). More importantly, recent work has shown that full
re-programming may be achieved with a combination of seven
small molecules alone, suggesting that induced pluripotency may
not be dependent on the use of virus-based delivery systems (65).
To achieve this, the authors screened 10,000 small molecules in
order to find suitable replacements for each transcription fac-
tor. Three molecules, forskolin, 2-methyl-5-hydroxytryptamine,
and D4476 were, for instance, identified as chemical substitutes
for Oct3/4.

Perhaps the most dramatic advance in this rapidly evolving field
has, however, been the recent description of stimulus-triggered
fate conversion of cells (66), in which transient exposure of ter-
minally differentiated cells to adverse conditions such as low pH,
induces the upregulation of pluripotency genes. This approach has
been shown to confer on cells such as murine lymphocytes, the
capacity to form germline-competent chimeras following injec-
tion into recipient blastocysts, or the formation of entire offspring
in tetraploid complementation assays. However, this method has
yet to be verified independently and further characterization of
the iPS cell lines produced in this way must be conducted and the
translation of protocols to adult human cells has yet to be achieved,
this approach may one day allow the generation of iPS cells lines
with minimal intervention, compatible with downstream clinical
applications.

Although traditionally much of the interest in iPS cells has
focused on applications in regenerative medicine, other indica-
tions include their use as a novel source of hematopoietic cell
types for cancer immunotherapy (Figure 1). The opportunity to
derive iPS cells in a patient-specific manner, together with their
tractability for genome editing using newly developed technolo-
gies such as the CRISPR–Cas-9 system (67) make them attractive

Table 1 | Methods of reprogramming and complications associated with derived iPS cell lines.

Advantages Disadvantages

Forced expression of genes

via retrovirus

Well-characterized method, long history of use,

arguably a simple approach and low cost, relatively

high reprogramming rates of 0.01–0.02%

Integration into the genome may generate immunogenic

cells, virus will only enter cells in mitosis, use of oncogenes

such as c-Myc

Small molecules Low cost of compounds, increases the efficiency of

reprogramming

Only recent reports of full reprogramming achievable with

small molecules alone: further characterization of lines

generated needed

Synthetic miRNA No integration within the genome Very low reprogramming efficiency, miRNA degrades rapidly,

modification of miRNA complicated, and time-consuming

Forced expression of genes

via Sendai virus

No integration into the genome, higher efficiency of

reprogramming than using retrovirus, diluted out of

culture upon passage rapidly, high reprogramming

rate of 0.1%

Difficult to work with, therefore most commonly used as

pre-packaged “kits,” which are expensive compared to other

viral methods of reprogramming

Episomal plasmid vector

system

No genomic footprint Very low efficiency of reprogramming (0.0002%), loss of

episomal plasmid

Stimulus-triggered acquisition

of pluripotency (STAP)

No nuclear transfer or introduction of transcription

factors

Limited capacity for self-renewal when compared to ES

cells.

Reports have yet to be independently verified
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FIGURE 1 | Applications of iPS cells for cancer immunotherapy. iPS
cells reprogramed from skin biopsies of cancer patients can be
differentiated into DCs, which can be reintroduced into patients to cross
present TAA. These iPS cells can also be differentiated into NK cells and
NKT cells, which can be adoptively transferred into the patient to target
cancer cells; iPS cells can be generated by reprogramming tumor-specific

CTLs, which can provide an unlimited source of naïve CD8+ T cells with the
desired specificity; tumor-infiltrating Treg cells may likewise be reprogramed
into iPS cells and redifferentiated into CD4+ Th cells, which are capable of
providing help to the CTLs to target cancerous cells; these iPS cells can
also be exploited to study the genetic basis of transformation and its
influence of primary cell types.

candidates for such applications. Furthermore, their indefinite
capacity for self-renewal may greatly facilitate the scale-up of
cell production, offering unrivaled opportunities for overcom-
ing many of the obstacles encountered using conventional sources
of cells.

EXPLOITING INDUCED PLURIPOTENCY FOR THE STUDY AND
TREATMENT OF CANCER
CANCER iPS CELLS AS MODELS OF DISEASE PROGRESSION
The use of iPS cell lines to model in vitro a broad range
of human disease states has already begun to yield important
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advances in our understanding of their pathogenesis and pro-
gression. Nevertheless, the generation of iPS cells from primary
cancer cells has remained a significant challenge, proving suc-
cessful for only a limited number of cancers due, most likely, to
the associated genetic or chromosomal abnormalities introduc-
ing a state of genetic instability (68). Although reprogramming
of gastrointestinal cancer cells to a pluripotent state has been
achieved by careful modification of culture conditions and re-
programming factors (69), it has proven necessary to use retroviral
vectors to introduce the necessary transgenes, which risks the
introduction of confounding mutations that may interfere with
the phenotype of cells differentiated from the resulting iPS cell
lines. Application of the latest non-viral reprogramming tech-
nologies to primary cancer cells is, therefore, paramount for
gaining insight into the impact that oncogenic events may have
on a range of primary cell types. The potential that such an
approach offers for drug discovery and toxicity screening may
facilitate the future identification of therapeutic targets as well
as novel neo-antigens that may be exploited for vaccination
purposes.

CANCER VACCINATION USING iPS CELL-DERIVED DCs
Given the significant donor-to-donor variability encountered in
the use of moDCs for cancer immunotherapy, early research
focused on the potential of pluripotency to provide a more
homogenous source of DCs amenable to scale-up. Accordingly,
several groups reported the successful differentiation of func-
tional DCs from both mouse and human ES cells (70, 71). Since
the use of animal products for their differentiation made them
unsuitable for clinical applications, Tseng and colleagues suc-
ceeded in developing protocols for their differentiation in an
animal product-free manner, compatible with their downstream
use in vivo (72). Although these DCs were shown to be func-
tional, possessing the ability to endocytose, process, and present
foreign antigen to naïve CD4+ T cells, their clinical utility was
restricted both by their limited capacity for cross presentation of
antigen to MHC class I-restricted CD8+ T cells and their differ-
entiation from allogeneic sources, requiring matching at certain
HLA loci. Recent work in our laboratory has, however, demon-
strated that CD141+XCR1+ DCs can be successfully derived from
human iPS cells using a cocktail of GM-CSF, stem cell factor
(SCF), vascular endothelial growth factor (VEGF), and bone mor-
phogenetic protein-4 (BMP4). This protocol was found to be
compatible with the exclusion of all animal products, ensuring
the downstream clinical compliance of the DCs obtained (73).
Unlike moDCs used for comparison, these DCs were shown to
efficiently cross present the TAA, Melan A, supplied exogenously
in recombinant form, to naïve CD8+ T cells in vitro, stimu-
lating a primary Melan A-specific immune response that could
be tracked using tetramer technology (73). Since iPS cells have
indefinite capacity for self-renewal in vitro, this approach pro-
vides a potentially unlimited source of autologous DCs that might
bypass the issue of patient-to-patient variability and the confound-
ing effects of long-term chemotherapy that impacts adversely on
the circulating monocytes from which conventional moDCs are
derived.

DIFFERENTIATION OF T CELLS FOR ADOPTIVE TRANSFER
While the use of DCs to stimulate TAA-specific immune responses
in vivo offers the prospect of establishing durable immunological
memory, an alternative strategy for cancer immunotherapy has
been the adoptive transfer of antigen-specific T cells, expanded ex
vivo. Since such expansion regimes risk the functional exhaustion
of the resulting cells, the differentiation of potentially unlimited
numbers of primary T cells from pluripotent stem cells has proven
an attractive goal. The co-culture of mouse ES cells with the
OP9 stromal cell line constitutively expressing delta-like ligand
1 (OP9-DL1), has been shown to successfully support their differ-
entiation into T-cell progenitors (74, 75). Nevertheless, their final
commitment to the T-cell lineage requires their introduction into
fetal thymus organ cultures, so as to provide a microenvironment
conducive to TCR gene rearrangement and subsequent positive
selection of a diverse CD4+ and CD8+ T-cell repertoire. On trans-
ferring these ES cell-derived T cells into RAG2−/− mice, immune
reconstitution was readily observed, strongly suggesting that T
cells generated in this way were functionally mature. Although
these findings suggest that pluripotent stem cells may serve as a
potentially unlimited source of naïve T cells for adoptive transfer,
the requirement for an appropriate thymic microenvironment to
support V(D)J recombination and positive selection poses signifi-
cant ethical and pragmatic barriers to the translation of protocols
to the human.

A logical way to overcome this hurdle might be to harness
induced pluripotency to generate iPS cells from T cells that have
already undergone V(D)J recombination and are known to exhibit
a desirable antigen specificity. Any T cells differentiated from the
parent iPS cell line would maintain the original antigen specificity
of the parent cells, and may, therefore, differentiate in vitro in a
thymus-independent manner. Recent studies have reported the
successful differentiation of antigen-specific T cells from an iPS
cell line itself generated from CTL specific for an epitope from
the melanoma antigen MART-1 (76). These cells were expanded
by stimulation with anti-CD3 mAbs, thereby generating CD8+ T
cells, which were shown to respond to MART-1, demonstrating
retention of their original antigen specificity.

Given the low frequency of tumor-specific T cells in the periph-
ery of individuals and difficulties surrounding their identification,
Themeli and colleagues exploited the tractability of iPS cells for
genetic modification to introduce a bicistronic lentiviral vector
encoding 19–28z, a CAR specific for CD19, expressed by the
majority of leukemias and lymphomas. The authors were able to
optimize differentiation conditions to allow for serum and feeder
free generation of hematopoietic progenitor cells which, when co-
cultured with OP9-DL1 stromal cells in the presence of SCF, Flt3L,
and interleukin-7 (IL-7), differentiated into T cells expressing the
CD19-specific CAR. T cells produced in this way were activated
by CD19+ APCs and, upon infusion into mice, potently inhibited
tumor progression (77).

While the use of CARs may circumvent the requirement for the
identification of antigen-specific T cells, an alternative method of
capturing desirable antigen specificities might be to exploit TILs
whose presence within a developing tumor provides compelling
evidence for their specificity. Whereas CD8+ CTL are readily
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obtained from tumor biopsies and lend themselves to reprogram-
ming, other T-cell subsets are also evident including regulatory T
(Treg) cells. The presence of these Treg cells is known to negatively
correlate with survival rates (78), due to their capacity to sup-
press anti-tumor immune responses and facilitate evasion of the
developing tumor from the host immune system. If tumor-specific
Treg cells could likewise be reprogramed to pluripotency, their
redifferentiation along the T-cell lineage might provide oppor-
tunities for their phenotypic reassignment into effector T cells,
providing a valuable source of CD4+ T-cell help for endogenous
CTL responses in danger of exhaustion.

One of the major hurdles to harnessing this approach is defin-
ing extracellular Treg-specific markers. Currently, the most widely
used marker for Treg cells is Foxp3 among CD4+CD25+ cells
(79). As this transcription factor is expressed solely in the nucleus,
however, sorting of cells based on its expression is not feasible.
Nevertheless, recent work has demonstrated that CD127 expres-
sion inversely correlates with Foxp3 and hence the suppressive
function of human CD4+ Treg cells (80). In addition to low
CD127 expression, expression of CD45RA is also apparent in
human CD4+ Treg cells (81): sorting cells based on a CD4+CD25+

CD127lowCD45RA+ phenotype would, therefore, represent the
most effective strategy currently available for isolating antigen-
specific Treg cells infiltrating the tumor microenvironment.

NK CELL-BASED IMMUNOTHERAPY
Although much interest has focused on the use of NK cells in
cancer immunotherapy, obtaining sufficient numbers for admin-
istration to patients remains a significant limitation. In 2005,
Woll and colleagues used a two-step process to differentiate
human ES cells into NK cells in vitro. These cells had the abil-
ity to lyse human tumor cells deficient in MHC class I expres-
sion and up-regulate cytokine production (82). Subsequently,
NK cells were successfully differentiated from human iPS cells,
using a similar two-stage culture system (83), the cells obtained
representing a pure population that did not require cell sort-
ing or co-culture with xenogeneic stromal cells. Moreover, suf-
ficient cytotoxic NK cells could be differentiated from 250,000
iPS cells to treat a single patient, suggesting that iPS cells pro-
vide a scalable platform for the clinical implementation of such
an approach.

In addition to bona fide NK cells, it has recently proven possi-
ble to derive NKT cells from iPS cells. NKT cells are characterized
by the expression of an invariant TCR encoded by Vα24–Jα18 in
humans and Vα14–Jα18 in mice (84). These cells share the prop-
erties of both NK cells and T cells and are thought to play an
important role in cancer immune surveillance (85). Indeed, NKT
cells differentiated from mouse iPS cells were shown to secrete
large quantities of IFNγ and actively suppress tumor growth
in vivo (86). The differentiation of NKT cells from iPS cells may,
therefore, make this elusive cell type readily accessible for cancer
immunotherapy in the future.

CONCLUSION
Although significant advances have been made in cancer
immunotherapy over the past decade with the discovery of human
cross presenting DCs and the use of CARs and TCR transfer for the

generation of more effective T-cell therapy, the requirements for
high specificity, minimal toxicity, and the capacity for immuno-
logical memory have yet to be achieved. It has been suggested that
since no single therapy is likely to fulfill all these criteria, adop-
tive transfer of tumor-specific T cells might be combined with DC
vaccination to generate a durable immune response (87). Given
the unrestricted differentiation potential of iPS cells, prospects
for the differentiation of either cell type from the same patient-
specific cell line provide a comprehensive approach. Furthermore,
their potential for the efficient scale-up of cell production and
tractability for new generation genome engineering tools, such as
the CRISPR/Cas-9 system and transcription activator-like effec-
tor nucleases (TALENs) (48, 49) may herald a new era in cancer
immunotherapy, in which treatments are exquisitely tailored to
the individual needs of the patient.
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